Local Piecewise Polynomial Projection Methods for an O.D.E. Which Give High-Order Convergence at Knots

By Carl de Boor and Blair Swartz*

Abstract

Local projection methods which yield $C^{(m-1)}$ piecewise polynomials of order $m+k$ as approximate solutions of a boundary value problem for an m th order ordinary differential equation are determined by the k linear functionals at which the residual error in each partition interval is required to vanish on. We develop a condition on these k functionals which implies breakpoint superconvergence (of derivatives of order less than m) for the approximating piecewise polynomials. The same order of superconvergence is associated with eigenvalue problems. A discrete connection between two particular projectors yielding $\mathcal{O}\left(|\Delta|^{2 k}\right)$ superconvergence, namely (a) collocation at the k Gauss-Legendre points in each partition interval and (b) "essential least-squares" (i.e., local moment methods), is made by asking that this same order of superconvergence result when using collocation at $k-r$ points per interval and simultaneous local orthogonality of the residual to polynomials of order r; the $k-r$ points then necessarily form a subset of the k Gauss-Legendre points.

Introduction. This is the last in a triple (see [2], [3]) of papers concerned with high-order approximation to eigenvalues of an O.D.E. using collocation at Gauss points. Correspondingly, its two sections are labelled 9 and 10, but it can be read without reference to [3], i.e., to Sections 5-8. Items labelled x.y or (x.y) are to be found in Section x, e.g., in [2] in case x is less than 5.

When writing [2], we were forced to go through the arguments in [1] once again and ended up improving upon them somewhat; see the proof of Theorem 9.2 below. In the process, we considered more general local piecewise polynomial projection methods in an effort to discover just what produces the superconvergence at breakpoints in Gauss-point collocation. This led us to a simple set of conditions on the local projector used which, so we found, had been formulated much earlier by Pruess [4] in another context. In addition to updating our earlier results in [1] and [2] to cover this wider class of projection methods, we give a detailed analysis of these special local projectors and establish a simple link between the two best known among these, viz. Interpolation at Gauss points and Least-squares approximation.
9. Some Projectors Which Yield Superconvergence. As de Boor and Swartz [1] describe it, local projection methods which involve sufficiently rough piecewise

[^0](C) 1981 American Mathematical Society
polynomials are basically determined by a bounded linear projector Q which carries $C[-1,1]$ onto \mathbf{P}_{k} (polynomials of order k, i.e., of degree $<k$), and hence satisfies
\[

$$
\begin{equation*}
\|f-Q f\| \leqslant \text { const }_{Q}\left\|D^{k} f\right\|_{\infty}, \quad \text { all } f \in C^{(k)}[-1,1] \tag{1}
\end{equation*}
$$

\]

for some constant const ${ }_{Q}$. Then, given a partition $\Delta:=\left(t_{i}\right)_{0}^{l}$ of $[0,1]$ with

$$
0=t_{0}<\cdots<t_{l}=1, \quad|\Delta|:=\max _{i} \Delta t_{i}
$$

Q determines a map Q_{Δ} projecting $\times_{i=1}^{l} C\left[t_{i-1}, t_{i}\right]=: C_{\Delta}$ onto $\mathbf{P}_{k, \Delta}$ (the space of piecewise polynomials of order k with breakpoints in Δ) by translating the procedure for $C[-1,1]$ to each partition interval; i.e., by requiring that, on each $\left[t_{i}, t_{i+1}\right]$ and for $y \in C_{\Delta}$,

$$
\begin{equation*}
Q_{\Delta} y=S_{i}^{-1} Q S_{i} y, \quad \text { with }\left(S_{i} g\right)(s):=g\left(t_{i+1 / 2}+s \Delta t_{i} / 2\right) \text { for } s \in[-1,1] \tag{2}
\end{equation*}
$$

Then, from (1),

$$
\left\|f-Q_{\Delta} f\right\|_{(i)} \leqslant \text { const }_{Q}\left|\Delta t_{i}\right|^{k}\left\|D^{k} f\right\|_{(i)}
$$

with

$$
\|g\|_{(i)}:=\sup \left\{|g(t)|: t_{i}<t<t_{i+1}\right\} .
$$

Finally, the projection method for the m th order differential equation $M x=y$, $\boldsymbol{\beta} x=\mathbf{0}$, is determined by requiring that $x_{\Delta} \in \mathbf{P}_{m+k, \Delta}^{m}:=\mathbf{P}_{m+k, \Delta} \cap C^{(m-1)}[0,1]$ satisfy

$$
\begin{equation*}
Q_{\Delta} M x_{\Delta}=Q_{\Delta} y, \quad \boldsymbol{\beta} x_{\Delta}=\mathbf{0} . \tag{3}
\end{equation*}
$$

We consider a set of constraints upon Q which permits proof of $\mathcal{O}\left(|\Delta|^{k+n}\right)$ breakpoint superconvergence for this projection method. These constraints, constructed by Pruess in another context [4, pp. 553-554, esp. p. 554, line 5], can be stated as follows:

For some positive integer $n \leqslant k$ (and in terms of $\mathbf{L}_{2}[-1,1]$),

$$
\begin{equation*}
\mathbf{P}_{i} \perp(1-Q)\left[\mathbf{P}_{k+n+1-i}\right], \quad i=1, \ldots, n . \tag{4}
\end{equation*}
$$

This condition is equivalent to the following: For some sequence $\left(f_{i}\right)_{1}^{k+n}$ with

$$
\begin{equation*}
\mathbf{P}_{j}=\operatorname{span}\left(f_{i}\right)_{1}^{j}, \quad \text { all } j, \tag{5a}
\end{equation*}
$$

we have

$$
\begin{equation*}
Q f_{j}=0 \quad \text { for } j>k \tag{5b}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-1}^{1} f_{i} f_{j}=0 \quad \text { for } i \leqslant k<j \leqslant k+n+1-i . \tag{5c}
\end{equation*}
$$

Indeed, by (5a), (4) is equivalent to having

$$
\int f_{r}(1-Q) f_{j}=0 \quad \text { for } r \leqslant i, \quad j \leqslant k+n+1-i, \text { and } i=1, \ldots, n
$$

In fact, since $(1-Q) f_{j}=0$ for $j \leqslant k$, (4) is equivalent to having

$$
\int f_{r}(1-Q) f_{j}=0 \quad \text { for } r \leqslant i, \quad k<j \leqslant k+n+1-i, \text { and } i=1, \ldots, n
$$

i.e., for $j>k$ and $r \leqslant k+n+1-j$, and so, by (5b), (4) is equivalent to (5c). This shows that ($5 \mathrm{a}-\mathrm{c}$) implies (4). On the other hand, for any linear projector Q onto \mathbf{P}_{k}, we can find $\left(f_{i}\right)_{1}^{k+n}$ satisfying ($5 \mathrm{a}-\mathrm{b}$) by taking

$$
f_{i}:=\left\{\begin{array}{ll}
g_{i}, & i \leqslant k, \\
(1-Q) g_{i}, & i>k,
\end{array} \quad \text { with }\left(g_{i}\right) \text { s.t. } \mathbf{P}_{j}=\operatorname{span}\left(g_{i}\right)_{1}^{j}, \text { all } j\right.
$$

hence the argument also shows that (4) implies ($5 \mathrm{a}-\mathrm{c}$). Finally, this last statement shows (with $g_{i}(t)=t^{i-1}$, all i) that (4) is also equivalent to

$$
\begin{equation*}
\int_{-1}^{1} t^{r}(1-Q) t^{s}=0 \quad \text { for } r<n, \quad r+s<k+n . \tag{6}
\end{equation*}
$$

Since Pruess was the first to consider projectors satisfying (4) (i.e., (6), see [5]), we call any linear projector Q onto \mathbf{P}_{k} and satisfying (4) a ssuper projector of order (k, n).

Example 1. Collocation. Taking, in particular, $f_{i}(t)=\Pi_{j<i}\left(t-\rho_{j}\right)$, with $\rho_{1}, \ldots, \rho_{k}$ the collocation pattern and $\rho_{k+1}, \ldots, \rho_{k+n}$ arbitrary, we find, from (5), the condition

$$
\int_{-1}^{1} p(t) \prod_{j=1}^{k}\left(t-\rho_{j}\right) d t=0 \quad \text { for all } p \in \mathbf{P}_{n}
$$

(used in [1]) to imply that Q, given by polynomial interpolation at $\rho_{1}, \ldots, \rho_{k}$, is a ssuper projector of order (k, n).

Example 2. Essential least squares (method of moments, or of iterated integrals). Taking, in particular, $f_{i}=P_{i-1}:=$ the Legendre polynomial of degree $i-1$, all i, we find that Q, given as least squares approximation from \mathbf{P}_{k}, is a ssuper projector, of order (k, k). We have called the corresponding process "essential least squares" because the associated projection method (3) requires that the residual error, $M x_{\Delta}-y$, be orthogonal to $\mathbf{P}_{k, \Delta}=D^{m}\left[\mathbf{P}_{m+k, \Delta}^{m} \cap \operatorname{ker} \boldsymbol{\beta}\right]$ (assuming $\boldsymbol{\beta}=\left(\beta_{i}\right)_{1}^{m}$ to be linearly independent on \mathbf{P}_{m}); while ordinary least squares asks that this residual be orthogonal to $M\left[\mathbf{P}_{m+k, \Delta}^{m} \cap \operatorname{ker} \boldsymbol{\beta}\right]$. This process has also been called a "local moment method" for an m th order equation. In this connection, recall that Wittenbrink [6, Example 3c] shows this to be equivalent to asking that the iterated integrals of order $j, 1 \leqslant j \leqslant k$, of the residual error vanish at all the breakpoints. We have chosen, however, to emphasize its connection to least squares.

The validity of (4) suffices for proof of the following result from which we shall conclude $\mathcal{\theta}\left(|\Delta|^{k+n}\right)$ breakpoint superconvergence. The lemma (and its proof) are a variant of Pruess' result [4, Section 3] and [5, Lemma 2].

Lemma 9.1. Let Q be a ssuper projector of order (k, n). Then

$$
\begin{equation*}
\left|\int_{-1}^{1} f(1-Q) g\right| \leqslant \text { const }_{Q} \sum_{j<n}\left\|D^{j} f\right\|\left\|D^{k+n-j} g\right\| . \tag{7}
\end{equation*}
$$

Proof. Let $\left(T_{j} f\right)(t):=\sum_{i<j} D^{i} f(0) t^{i} / i!$. Then

$$
\int_{-1}^{1} f(1-Q) g=\int_{-1}^{1} f(1-Q) T_{k+n} g+\theta\left(\|f\|\left\|D^{k+n} g\right\|\right)
$$

while

$$
\int_{-1}^{1} f(1-Q) T_{k+n} g=\sum_{r=k}^{k+n-1} D^{r} g(0) / r!\int_{-1}^{1} f(t)(1-Q) t^{r}
$$

since Q reproduces \mathbf{P}_{k}. On the other hand, since Q is a ssuper projector of order (k, n),

$$
\int_{-1}^{1}\left(T_{k+n-r} f\right)(1-Q) t^{r}=0
$$

(using (6)), and so

$$
\int_{-1}^{1} f(1-Q) t^{r}=\int_{-1}^{1}\left(f-T_{k+n-r} f\right)(1-Q) t^{r}=\mathcal{O}\left(\left\|D^{k+n-r} f\right\|\right) .
$$

Consequently,

$$
\int_{-1}^{1} f(1-Q) g=\mathcal{O}\left(\sum_{r=k}^{k+n}\left\|D^{r} g\right\|\left\|D^{k+n-r} f\right\|\right)
$$

and the substitution $j:=k+n-r$ brings this into the form (7).
With the definition (2) of Q_{Δ}, it follows that

$$
\begin{aligned}
\left|\int_{0}^{1} f\left(1-Q_{\Delta}\right) g\right| & =\left|\sum_{i=0}^{l-1}\left(\Delta t_{i} / 2\right) \int_{-1}^{1}\left(S_{i} f\right)(1-Q)\left(S_{i} g\right)\right| \\
& \leqslant \operatorname{const}_{Q} \sum_{i=0}^{l-1}\left(\Delta t_{i} / 2\right) \sum_{j<n}\left\|D^{j} S_{i} f\right\|\left\|D^{k+n-j} S_{i} g\right\|
\end{aligned}
$$

while, e.g.,

$$
\left\|D^{j} S_{i} f\right\|=\left(\Delta t_{i} / 2\right)^{j}\left\|D^{j} f\right\|_{(i)}
$$

Consequently, we have
Corollary 1. If Q is a ssuper projector of order (k, n), then there exists const $_{Q}$ so that for $f \in \times_{0}^{l-1} \mathbf{L}_{\infty}^{(n)}\left[t_{i}, t_{i+1}\right]$ and $g \in \times_{0}^{l-1} \mathbf{L}_{\infty}^{(k+n)}\left[t_{i}, t_{i+1}\right]$,

$$
\left|\int_{0}^{1} f\left(1-Q_{\Delta}\right) g\right| \leqslant \text { const }_{Q} \sum_{i=0}^{l-1}\left(\Delta t_{i}\right)^{1+k+n}\|f\|_{n,(i)}\|g\|_{k+n,(i)}
$$

with

$$
\|f\|_{r,(i)}:=\max _{j<r}\left\|D^{j} f\right\|_{(i)} .
$$

If now f and/or g in Lemma 9.1 are not as smooth as required, say, $f \in \mathbf{L}_{\infty}^{\left(n_{\infty}\right)}$, $g \in \mathbf{L}_{\infty}^{\left(k+n_{g}\right)}$, with $n_{f}, n_{g} \leqslant n$, then we are only entitled to consider $T_{k+n_{g}} g$ and $T_{j} f$ for $j \leqslant n_{f}$, hence, instead of (7), we get

$$
\begin{equation*}
\left|\int_{-1}^{1} f(1-Q) g\right| \leqslant \operatorname{const}_{Q} \sum_{j<n_{f}}\left\|D^{j} f\right\|\left\|D^{k+\left(n_{g}-j\right)_{+}} g\right\| . \tag{8}
\end{equation*}
$$

Correspondingly, we get
Corollary 2. If Q is a ssuper projector of order (k, n), then there exists const so that for $f \in \times_{0}^{l-1} \mathbf{L}_{\infty}^{\left(n_{f, i}\right)}\left[t_{i}, t_{t+1}\right]$ and $g \in \times_{0}^{l-1} \mathbf{L}_{\infty}^{\left(k+n_{g, s}\right)}\left[t_{i}, t_{i+1}\right]$ with $n_{f, i}, n_{g, i} \leqslant n$, all i,

$$
\begin{equation*}
\left|\int_{0}^{1} f\left(1-Q_{\Delta}\right) g\right| \leqslant \text { const } \sum_{i=0}^{l-1}\left(\Delta t_{i}\right)^{1+k+\min \left\{n_{f, s,}, n_{g, i}\right\}}\|f\|_{n_{j, i},(i)}\|g\|_{k+n_{8,1},(i)} . \tag{9}
\end{equation*}
$$

We now sketch proofs concerning the convergence of x_{Δ} satisfying (3) to x. From the proof of Theorem 3.1 in de Boor and Swartz [1], we find that x_{Δ} exists
uniquely for $|\Delta|$ sufficiently small; that if $M x \in C_{\Delta}[0,1]$, then

$$
\left\|D^{r}\left(x-x_{\Delta}\right)\right\|_{\infty} \leqslant \text { const } \omega_{\Delta}(M x), \quad 0 \leqslant r \leqslant m,
$$

with $\omega_{\Delta}(f):=\sup _{i} \sup \left\{|f(t)-f(s)|: t_{i}<s, t<t_{i+1}\right\}$; and that if $x \in C^{(m-1)}[0,1]$ $\cap C_{\Delta}^{(m+k)}[0,1]$, then
$\left\|D^{r}\left(x-x_{\Delta}\right)\right\|_{\infty} \leqslant \mathrm{const}|\Delta|^{k}\|x\|_{m+k, \Delta}, \quad 0 \leqslant r \leqslant m ; \quad\|x\|_{j, \Delta}:=\max _{i}\|x\|_{j,(i)}$.
The proof of Lemma 4.1 in that paper, which uses this convergence of $x_{\Delta}=: R x$ together with the Markov inequality for polynomials, yields additionally that

$$
\left\|x_{\Delta}\right\|_{r,(i)} \leqslant \operatorname{const}\left(|\Delta| / \Delta t_{i}\right)^{k}\|x\|_{m+k, \Delta}, \quad r \geqslant 0
$$

The proof of superconvergence then goes as follows: for fixed $s \in\left[t_{i}, t_{i+1}\right]$ and for fixed $r<m$,

$$
\begin{aligned}
& D^{r}\left(x-x_{\Delta}\right)(s)=\int_{0}^{1} v(t)\left[M\left(x-x_{\Delta}\right)(t)\right] d t, \text { where } \\
& v(t):=\left(\partial^{r} G / \partial s^{r}\right)(s, t) \in \mathbf{L}_{\infty}^{(m-1-r)}[0,1] \cap\left(C^{(n)}[0, s] \times C^{(n)}[s, 1]\right) \\
& G:=\text { Green's function for } M \text { under suitable homogeneous side conditions } \beta
\end{aligned}
$$

Since

$$
M\left(x-x_{\Delta}\right)=\left(1-Q_{\Delta}\right) M x+Q_{\Delta} M\left(x-x_{\Delta}\right)+\left(Q_{\Delta}-1\right) M x_{\Delta}
$$

with the second term vanishing by (3), the corollaries to Lemma 9.1 yield (uniformly in s)

$$
\left|D^{r}\left(x-x_{\Delta}\right)(s)\right| \leqslant \mathrm{const}\left[\sum_{i=0}^{l-1}\left(\Delta t_{i}\right)^{k+1+n(i)}\|v\|_{n(i),(i)}\left(\|M x\|_{k+n,(i)}+\left\|M x_{\Delta}\right\|_{k+n,(i)}\right)\right]
$$

where

$$
n(i):= \begin{cases}\min \{m-1-r, n\} & \text { if } s \in\left(t_{i}, t_{i+1}\right), \\ n & \text { otherwise }\end{cases}
$$

Thus, we conclude the superconvergence rates of the following theorem which generalizes the collocation conclusions of [1, Theorem 4.1]:

Theorem 9.2. Let Q be a ssuper projector of $\operatorname{order}(k, n)$. Then, for sufficiently small $|\Delta|$, there exists $x_{\Delta} \in \mathbf{P}_{m+k, \Delta}^{m}$ satisfying (3), hence, then, the linear projector P_{Δ} given by the rule

$$
\begin{equation*}
Q_{\Delta} P_{\Delta} f=Q_{\Delta} f, \quad P_{\Delta} f \in\left\{M z: z \in \mathbf{P}_{m+k, \Delta}^{m}, \boldsymbol{\beta} z=0\right\} \tag{9}
\end{equation*}
$$

is well defined. Further, consider $x_{\Delta} \in \mathbf{P}_{m+k, \Delta}^{m}$ satisfying (3) as an approximate solution to $M x=y, \boldsymbol{\beta}=\mathbf{0}$, where the coefficients of M lie in $C^{(n+k)}[0,1]$ and the side conditions $\boldsymbol{\beta}$ are suitable. Then, uniformly in the maximum mesh size $|\Delta|$, we have the global estimates

$$
\begin{aligned}
& \left\|D^{r}\left(x-x_{\Delta}\right)\right\|_{\infty} \leqslant \operatorname{const} \omega_{\Delta}(y), \quad 0 \leqslant r \leqslant m ; \\
& \left\|D^{r}\left(x-x_{\Delta}\right)\right\|_{\infty} \leqslant \operatorname{const}|\Delta|^{k+\min \{m-r, n\}}\|x\|_{m+k+\min \{m-r, n\}, \Delta}, \quad 0 \leqslant r \leqslant m ;
\end{aligned}
$$

while, uniformly over the breakpoints $\left(t_{i}\right)_{0}^{l}$ of Δ,

$$
\left|D^{r}\left(x-x_{\Delta}\right)\left(t_{i}\right)\right| \leqslant \mathrm{const}|\Delta|^{k+n}\|x\|_{m+k+n, \Delta}, \quad 0 \leqslant r<m .
$$

Remarks. Isolated solutions in $C^{(m+k+n)}[0,1]$ to nonlinear problems can be handled as in [1, Theorem 3.1], where the question of superconvergence is reduced to the superconvergence associated with a linearized problem (which we have just settled).

We have left open so far the question of when the side conditions $\boldsymbol{\beta}$ are "suitable". Simply put, the side conditions are "suitable" if Green's function resulting from them allows the earlier argument to be made. If, for example, $\boldsymbol{\beta}$ consists of multipoint conditions, then one fixes a partition $\Delta_{0}=\left(t_{i}^{(0)}\right)_{0}^{L}$ of $[0,1]$ whose partition points contain all the points involved in $\boldsymbol{\beta}$, and insists that all partitions Δ under consideration are refinements of Δ_{0}. Green's function for $(M, \boldsymbol{\beta})$ then satisfies

$$
\begin{equation*}
(\partial / \partial s)^{r} G(s, \cdot) \in C_{\Delta_{0}}^{(n)}[0, s] \times C_{\Lambda_{0}}^{(n)}[s, 1], \tag{10}
\end{equation*}
$$

and this is enough to complete the argument for x_{Δ} correspondingly in $\times_{i=1}^{L} \mathbf{P}_{m+k, \Delta}^{m}\left[t_{i-1}^{(0)}, t_{i}^{(0)}\right]$. In fact, it is easy to see now how to handle the more general situation in which we have differential operators of possibly different orders on the different intervals given by the partition Δ_{0}, with appropriate side conditions at the points of Δ_{0} tying the pieces together.

Turning now to the eigenvalue problem, Corollary 1 of Lemma 9.1 is the general version promised in [2] of Lemma 3.1 there. It therefore permits the following generalization of Theorem 3.1 there.

Theorem 9.3. Let $T=N M^{-1}$ be the compact map on $\mathbf{L}_{p}[0,1], 1 \leqslant p \leqslant \infty$, associated with the sufficiently smooth operators M, N, and $\boldsymbol{\beta}$ of (0.2). Let μ be a nonzero eigenvalue of T with corresponding invariant subspace S, and let J be a matrix representation for $\left.T\right|_{s}$. Let $T_{\Delta}=P_{\Delta} T$, where P_{Δ} is the projector given by (9) associated with a ssuper projector Q of order (k, n). Then, for all small $|\Delta|, T_{\Delta}$ has an invariant subspace S_{Δ}, and $\left.T_{\Delta}\right|_{s_{\Delta}}$ has a matrix representation J_{Δ} for which

$$
\left\|J-J_{\Delta}\right\| \leqslant \operatorname{const}|\Delta|^{k+n} .
$$

10. Ssuper Projectors of Order (k, k) Associated With Point Evaluations. We now look in more detail at the possible ssuper projectors of order (k, k). To begin with, we only consider their action on $\mathbf{P}_{2 k}$, and this we can describe fully by specifying their action on the elements of some basis for $\mathbf{P}_{2 k}$. We found it particularly convenient to work with the basis $\left(P_{i}\right)_{0}^{2 k-1}$ consisting of the Legendre polynomials. Then, for any linear projector Q onto \mathbf{P}_{k},

$$
\left.\begin{array}{l}
Q P_{j}=P_{j} \tag{1}\\
Q P_{k+j}=\sum_{r=1}^{k} a_{j r} P_{k-r}
\end{array}\right\}, \quad j=0, \ldots, k-1,
$$

and different projectors Q correspond to different matrices $\left(a_{i j}\right)$. Further, two such projectors agree on \mathbf{P}_{k+r} if and only if the corresponding matrices agree in rows $0, \ldots, r-1$.

Let

$$
f_{j}:= \begin{cases}P_{j-1}, & j \leqslant k, \\ P_{j-1}-Q P_{j-1}, & j>k\end{cases}
$$

Then $\left(f_{j}\right)$ satisfies $(9.5 \mathrm{a}-\mathrm{b})$, hence, with $(9.5 \mathrm{c}), Q$ is ssuper of order (k, k) if and only if

$$
\int_{-1}^{1} P_{i-1} \sum_{r=1}^{k} a_{j-k-1, r} P_{k-r}=0 \quad \text { for } i \leqslant k<j \leqslant 2 k+1-i .
$$

This holds if and only if

$$
a_{j-k-1, r}=0 \quad \text { for } i-1=k-r \quad \text { and } i \leqslant k<j \leqslant 2 k+1-i
$$

i.e., if and only if

$$
a_{q r}=0 \quad \text { for } 0 \leqslant q \leqslant r-1 .
$$

We have proved
Lemma 10.1. The conditions

$$
\begin{gather*}
Q f_{k+j}=0 \quad \text { with } \\
f_{k+1}:=P_{k} \quad \text { and } \quad f_{k+j}:=P_{k+j-1}-\sum_{r=1}^{j-1} a_{j-1, r} P_{k-r}, \quad j=2, \ldots, k \tag{2}
\end{gather*}
$$

establish a one-to-one correspondence between ssuper projectors Q on $\mathbf{P}_{2 k}$ and lower triangular matrices $\left(a_{i r}\right)_{i, r=1}^{k-1}$.

Of course, any such ssuper projector Q on $\mathbf{P}_{2 k}$ can be extended to infinitely many such on $C[-1,1]$; and any such can be obtained in the form $Q P$, with P an arbitrary linear projector on $C[-1,1]$ onto $\mathbf{P}_{2 k}$. We choose to ignore this aspect, though, since the property of being ssuper of order (k, k) depends only on the action on $\mathbf{P}_{2 k}$.

Lemma 10.1 gives rise to several observations.
The first interesting basis function, viz. f_{k+1}, is simply the k th Legendre polynomial, P_{k}. Hence, if we think now of Q as being given by the rule

$$
\begin{equation*}
Q f \in \mathbf{P}_{k} \quad \text { and } \quad q_{i}^{*} Q f=q_{i}^{*} f, \quad i=1, \ldots, k \tag{3}
\end{equation*}
$$

for suitably chosen linear functionals $q_{1}^{*}, \ldots, q_{k}^{*}$, then we must have

$$
\begin{equation*}
q_{i}^{*} P_{k}=0, \quad i=1, \ldots, k \tag{4}
\end{equation*}
$$

Now, in Example 1 (Collocation), we had

$$
q_{i}^{*} f=f\left(\rho_{i}\right), \quad i=1, \ldots, k
$$

and so (4) is satisfied (for $n=k$ in Example 1) since then $\left(\rho_{i}\right)_{1}^{k}$ is simply the sequence of zeros of P_{k}. In Example 2 (Least squares),

$$
q_{i}^{*} f=\int_{-1}^{1} P_{i-1} f, \quad i=1, \ldots, k
$$

and, again, (4) is satisfied since P_{k} is orthogonal to $\mathbf{P}_{k}=\operatorname{span}\left(P_{i-1}\right)_{1}^{k}$. Suppose now that, in an attempt to bridge the gap between these two particular ssuper projectors, we look for ssuper projectors for which some of the interpolation conditions are point evaluations, say

$$
q_{i}^{*} f=f\left(\sigma_{i}\right), \quad i=1, \ldots, r
$$

for some r. Then we conclude from (4) that $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ must be a subset of $\left\{\rho_{1}, \ldots, \rho_{k}\right\}:=$ zeros of P_{k}. This leads us to consider

Example 3. Ssuper projectors using point evaluations. Let $\left(\rho_{i}\right)_{1}^{k}$ be the zeros of P_{k} in some order. Then, for $r=0, \ldots, k$, the conditions

$$
\begin{equation*}
Q_{r} f \in \mathbf{P}_{k}, \quad f-Q_{r} f \perp \mathbf{P}_{r}, \quad Q_{r} f\left(\rho_{i}\right)=f\left(\rho_{i}\right) \quad \text { for } i=r+1, \ldots, k, \tag{5}
\end{equation*}
$$

define a ssuper projector Q_{r} of order (k, k).
This provides us with a sequence of ssuper projectors of order (k, k), with Q_{0}, i.e., interpolation at the Gauss-Legendre points, at one end and Q_{k}, i.e., Leastsquares approximation, at the other, and so demonstrates a perhaps surprisingly simple connection between the two.

We now verify Example 3. In order to confirm that (5) defines a linear projector Q_{r}, we note that the conditions mentioned are equivalent to demanding that

$$
Q_{r} f \in \mathbf{P}_{k}, \quad q_{i}^{*} Q_{r} f=q_{i}^{*} f, \quad i=1, \ldots, k
$$

with

$$
q_{i}^{*} f= \begin{cases}\int_{-1}^{1} P_{i-1} f, & i=1, \ldots, r \tag{6}\\ f\left(\rho_{i}\right), & i=r+1, \ldots, k\end{cases}
$$

Thus it suffices to show that the matrix

$$
\begin{equation*}
\left(q_{i}^{*} P_{j-1}\right)_{i, j=1}^{k} \tag{7}
\end{equation*}
$$

is invertible. For this, assume that this matrix maps $\mathbf{a}=\left(a_{i}\right)_{1}^{k}$ to $\mathbf{0}$, i.e.,

$$
\begin{equation*}
q_{i}^{*} p=0, \quad i=1, \ldots, k \quad \text { with } p:=\sum_{j=1}^{k} a_{j} P_{j-1} . \tag{8}
\end{equation*}
$$

Let (w_{i}) be the weight vector (known to be strictly positive) for the corresponding quadrature rule

$$
\int_{-1}^{1} f=\sum_{j=1}^{k} w_{j} f\left(\rho_{j}\right), \quad \text { all } f \in \mathbf{P}_{2 k} .
$$

Then (6) and (8) imply that

$$
0=\int_{-1}^{1} p P_{i-1}=\sum_{j=1}^{r} w_{j} p\left(\rho_{j}\right) P_{i-1}\left(\rho_{j}\right), \quad i=1, \ldots, r
$$

which shows that the invertible matrix $\left(P_{i-1}\left(\rho_{j}\right)\right)_{i, j=1}^{r}$ maps the vector $\left(w_{j} p\left(\rho_{j}\right)\right)_{1}^{r}$ to $\mathbf{0}$, and consequently p not only vanishes at $\rho_{r+1}, \ldots, \rho_{k}$ (by (6) and (8)) but also $p\left(\rho_{j}\right)=0$ for $j=1, \ldots, r$. Thus $p=0$, and so $\mathbf{a}=\mathbf{0}$.

Note that the invertibility of (7) just proven implies the invertibility of

$$
\begin{equation*}
\left(P_{j-1}\left(\rho_{i}\right)\right)_{i, j=r+1}^{k} \tag{9}
\end{equation*}
$$

since $q_{i}^{*} P_{j-1}=\int P_{i-1} P_{j-1}=0$ for $i \leqslant r<j$.
To verify that Q_{r} is ssuper (a fact not immediately obvious to us), we now show that Q_{r} can be obtained from Q_{0} by a suitable modification. For this, we need to consider these projectors on $\mathbf{P}_{2 k+1}$ (on which the ssuper projectors of order (k, k) form a $k(k+1) / 2$-dimensional hyperplane). Let

$$
f_{j}^{[r]}:= \begin{cases}P_{j-1}, & j=1, \ldots, k \\ \left(1-Q_{r}\right) P_{j-1}, & j=k+1, \ldots, 2 k+1\end{cases}
$$

hence,

$$
f_{k+j}^{[r]}=P_{k+j-1}-\sum_{s=1}^{k} a_{j-1, s}^{[r]} P_{k-s}, \quad j=1, \ldots, k+1
$$

for some matrix $\left(a_{j-1, s}^{[r]}\right)_{j, s=1}^{k+1, k}$. With this notation, we get, for $r=0$,

$$
f_{k+j}^{00}\left(\rho_{i}\right)=0, \quad i=1, \ldots, k, \quad j=2, \ldots, k+1
$$

and so
(10)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{1}^{[0]} & & 0 \\
\vdots & \ddots & \\
a_{k 1}^{[0]} & \cdots & a_{k k}^{[0]}
\end{array}\right]\left[\begin{array}{ccc}
P_{k-1}\left(\rho_{k}\right) & \cdots & P_{k-1}\left(\rho_{1}\right) \\
\vdots & & \vdots \\
P_{k-k}\left(\rho_{k}\right) & \cdots & P_{k-k}\left(\rho_{1}\right)
\end{array}\right] } \\
&=\left[\begin{array}{ccc}
P_{k+1}\left(\rho_{k}\right) & \cdots & P_{k+1}\left(\rho_{1}\right) \\
\vdots & & \vdots \\
P_{k+k}\left(\rho_{k}\right) & \cdots & P_{k+k}\left(\rho_{1}\right)
\end{array}\right]
\end{aligned}
$$

with $\left(a_{i j}^{[0]}\right)$ a lower triangular matrix (by Lemma 10.1) since Q_{0} is ssuper. Now write (10) in terms of partitioned matrices as

$$
\left[\begin{array}{cc}
A_{11} & 0 \tag{10}\\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

with A_{11}, B_{11}, and C_{11} all of order $k-r$. Our intent is to replace A_{22} by 0 and to modify A_{21} correspondingly in such a way that the equality in (10) or (10)' is preserved at least in the first $k-r$ columns. Explicitly,

$$
C_{21}=A_{21} B_{11}+A_{22} B_{21}=\left[A_{21}+A_{22} B_{21} B_{11}^{-1}\right] B_{11}
$$

(and B_{11} is indeed invertible since it is just a permutation of the matrix (9)). Thus

$$
\left[\begin{array}{cc}
A_{11} & 0 \tag{11}\\
\tilde{A}_{21} & 0
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & \tilde{C}_{22}
\end{array}\right],
$$

with

$$
\tilde{A}_{21}:=A_{21}+A_{22} B_{21} B_{11}^{-1}, \quad \tilde{C}_{22}:=\tilde{A}_{21} B_{12} .
$$

Now consider the linear projector Q on $\mathbf{P}_{2 k+1}$ given by

$$
Q f_{i}=\left\{\begin{array}{cl}
f_{i}, & i \leqslant k, \tag{12}\\
0, & i>k,
\end{array}\right.
$$

with

$$
f_{i}:=P_{i-1}, \quad i \leqslant k
$$

$$
\begin{align*}
f_{k+1} & :=P_{k}, \tag{13}\\
f_{k+i} & :=P_{k+i-1}-\sum_{j=1}^{k} a_{i-1, j} P_{k-j}, \quad i>1,
\end{align*}
$$

Then $\left(a_{i j}\right)$ is lower triangular. Hence Q is a ssuper projector of order (k, k) by Lemma 10.1. Further, on comparing (10)-(10)' with (11), we see that, for the linear functionals q_{i}^{*} of (6),

$$
q_{j}^{*} f_{k+i}=f_{k+i}\left(\rho_{j}\right)=0 \quad \text { for } i=2, \ldots, k+1, \quad j=r+1, \ldots, k
$$

while the fact that the last r columns of $\left(a_{i j}\right)$ are zero implies that $f_{k+i} \perp P_{r}$, $i=2, \ldots, k+1$, i.e., also

$$
q_{j}^{*} f_{k+i}=0 \quad \text { for } i=2, \ldots, k+1, \quad j=1, \ldots, r
$$

In addition, trivially, $q_{j}^{*} f_{k+1}=0$, all j. We conclude that ker $\left.Q\right|_{\mathbf{P}_{2 k+1}}=$ $\operatorname{span}\left(f_{k+j}\right)_{1}^{k+1}$ is contained in $\left.\cap \operatorname{ker} q_{j}^{*}\right|_{\mathbf{P}_{2 k+1}}$ and thus must equal it since both are of dimension $k+1$. This shows that $Q=Q_{r}\left(\right.$ on $\left.\mathbf{P}_{2 k+1}\right)$, i.e.,

$$
\left(a_{i j}^{[r]}\right)=\left[\begin{array}{cc}
A_{11} & 0 \tag{14}\\
A_{21}+A_{22} B_{21} B_{11}^{-1} & 0
\end{array}\right] .
$$

We have established, in particular, that Q_{r} is ssuper of order (k, k). In addition, comparing again (10)-(10)' with (11), we see that Q_{r} agrees with Q_{0} on $\operatorname{span}\left(f_{i}\right)_{i=1}^{2 k+1-r}=\mathbf{P}_{2 k+1-r}$. Thus, we could not tell Q_{1} and Q_{0} apart on $\mathbf{P}_{2 k}$.

We close our discussion of Example 3 with the following four observations.
(i) For $r \neq s, Q_{r}$ differs from Q_{s} somewhere on $\mathbf{P}_{2 k+2-\max \{r, s\}}$ (while, as we just noted, the two agree with Q_{0}, hence with each other, on $\left.\mathbf{P}_{2 k+1-\max \{r, s\}}\right)$. For the proof, apply both sides of (10) to the matrix

$$
\left(w_{k+1-i} P_{k-j}\left(\rho_{k+1-i}\right)\right)_{i, j=1}^{k} .
$$

Then, assuming that the Legendre polynomials have all been normalized to

$$
1=\int_{-1}^{1} P_{j}^{2}=\sum w_{i} P_{j}^{2}\left(\rho_{i}\right)
$$

we find that

$$
\begin{equation*}
\left(a_{i j}^{[0]}\right)=\left(\sum_{s=1}^{k} w_{s} P_{k+i}\left(\rho_{s}\right) P_{k-j}\left(\rho_{s}\right)\right) \tag{15}
\end{equation*}
$$

and, in particular,

$$
\begin{align*}
a_{i i}^{[0]} & =\sum_{s=1}^{k} w_{s} P_{k+i}\left(\rho_{s}\right) P_{k-i}\left(\rho_{s}\right) \\
& =\int_{-1}^{1} P_{k+i} P_{k-i}+\operatorname{const}_{k} D^{2 k}\left(P_{k+i} P_{k-i}\right) \neq 0 \tag{16}
\end{align*}
$$

This shows with (14) that $\operatorname{rank}\left(a_{i j}^{[r}\right)=k-r$, all r, and so proves our assertion.
(ii) The agreement of Q_{r} with Q_{0} on $\mathbf{P}_{2 k+1-r}$ is not restricted to the particular ssuper projector Q_{r}. If Q is any ssuper projector of order (k, k) which enforces agreement at $k-r$ points, then, not only must the $k-r$ points all be zeros of P_{k}, say the points $\rho_{r+1}, \ldots, \rho_{k}$ (in some suitable ordering), but such Q then necessarily agrees with Q_{0} on $\mathbf{P}_{2 k+1-r}$. For, by Lemma 10.1, Q satisfies (2) for some lower triangular matrix. The matching of function values at $\rho_{r+1}, \ldots, \rho_{k}$ then forces the
equality

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{11} & & 0 \\
\vdots & & \\
a_{k-r, 1} & \cdots & a_{k-r, k-r}
\end{array}\right]\left[\begin{array}{ccc}
P_{k-1}\left(\rho_{k}\right) & \cdots & P_{k-1}\left(\rho_{r+1}\right) \\
\vdots & & \vdots \\
P_{k-r}\left(\rho_{k}\right) & \cdots & P_{k-r}\left(\rho_{r+1}\right)
\end{array}\right] } \\
&=\left[\begin{array}{ccc}
P_{k+1}\left(\rho_{k}\right) & \cdots & P_{k+1}\left(\rho_{r+1}\right) \\
\vdots & & \vdots \\
P_{2 k-r}\left(\rho_{k}\right) & \cdots & P_{2 k-r}\left(\rho_{r+1}\right)
\end{array}\right] .
\end{aligned}
$$

In the terms of (10)', this reads

$$
\left(a_{i j}\right)_{i, j=1}^{k-r} B_{11}=C_{11}
$$

and the invertibility of B_{11} used earlier now proves that therefore

$$
\left(a_{i j}\right)_{i, j=1}^{k-r}=A_{11}=\left(a_{i j}^{[0]}\right)_{i, j=1}^{k-r} .
$$

(iii) The sequence Q_{1}, \ldots, Q_{k-1} connecting Q_{0} to Q_{k} constructed in Example 3 depends on the particular order $\rho_{1}, \ldots, \rho_{k}$ in which we have chosen to write down the k zeros of P_{k}. If $\left(Q_{r}^{\prime}\right)$ is the sequence corresponding to the ordering $\rho_{1}^{\prime}, \ldots, \rho_{k}^{\prime}$, then $Q_{r}=Q_{r}^{\prime}$ on $\mathbf{P}_{2 k+1}$ if and only if the two sets $\left\{\rho_{r+1}, \ldots, \rho_{k}\right\}$ and $\left\{\rho_{r+1}^{\prime}, \ldots, \rho_{k}^{\prime}\right\}$ coincide. Indeed, from (14), $Q_{r}=Q_{r}^{\prime}$ on $\mathbf{P}_{2 k+1}$ if and only if

$$
A_{21}+A_{22} B_{21} B_{11}^{-1}=A_{21}^{\prime}+A_{22}^{\prime} B_{21}^{\prime}\left(B_{11}^{\prime}\right)^{-1}
$$

Now, obviously, $A_{i j}=A_{i j}^{\prime}$, (15) makes this quite explicit, but it is clear anyway since Q_{0} does not depend on the order in which we write down the interpolation points, - and A_{22} is invertible, e.g., by (16). Thus, $Q_{r}^{\prime}=Q_{r}$ on $\mathbf{P}_{2 k+1}$ if and only if $D:=B_{21}^{\prime}\left(B_{11}^{\prime}\right)^{-1}-B_{21} B_{11}^{-1}=0$. Let Π be the permutation matrix for which $B^{\prime}=$ $B \Pi$. Then, on partitioning Π as B is in (10)', we find

$$
B_{11}^{\prime}=B_{11} \Pi_{11}+B_{12} \Pi_{21}, \quad B_{21}^{\prime}=B_{21} \Pi_{11}+B_{22} \Pi_{21}
$$

or

$$
\begin{aligned}
D B_{11}^{\prime} & =B_{21}^{\prime}-B_{21} B_{11}^{-1} B_{11}^{\prime} \\
& =B_{21} \Pi_{11}+B_{22} \Pi_{21}-B_{21} B_{11}^{-1}\left(B_{11} \Pi_{11}+B_{12} \Pi_{21}\right) \\
& =\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right) \Pi_{21} .
\end{aligned}
$$

Now note that $B_{22}-B_{21} B_{11}^{-1} B_{12}$ is the lower right diagonal block obtained by block Gauss elimination applied to B, and hence is invertible (since B is). We conclude that $D=0$ if and only if $\Pi_{21}=0$, and that says that Π permutes the first $k-r$ columns of B among themselves.
(iv) Finally, we observed earlier that the collection of all ssuper projectors of order (k, k) on $\mathbf{P}_{2 k+1}$ forms a linear manifold or hyperplane of dimension $k(k+1) / 2$. We now show that this linear manifold is spanned by the particular ssuper projectors Q_{r} introduced here. Precisely, we show that the collection of all ssuper projectors of order (k, k) on $\mathbf{P}_{2 k+1}$ is the affine hull of the $1+k(k+1) / 2$ particular projectors

$$
Q_{0}, Q_{11}, \ldots, Q_{1 k}, Q_{22}, \ldots, Q_{2 k}, Q_{33}, \ldots, Q_{k-1, k}, Q_{k k},
$$

with Q_{0} interpolation at all the zeros $\left(\rho_{i}\right)_{1}^{k}$ of P_{k}, while, for $1 \leqslant r \leqslant s \leqslant k, Q_{r s}$ is given by orthogonality to \mathbf{P}_{r} and matching of function values at the $k-r$ points $\rho_{r}, \ldots, \rho_{s-1}, \rho_{s+1}, \ldots, \rho_{k}$. Here, $\left(\rho_{i}\right)$ are in any particular order; in fact, in the definition of $Q_{r s}$, this order could even change with r (though not with s). To prove the assertion, it is sufficient to show that the $k(k+1) / 2$ linear maps $\left\{Q_{r s}-Q_{0}\right.$: $1 \leqslant r \leqslant s \leqslant k\}$ are linearly independent (as points in the linear space of all linear maps on $\mathbf{P}_{2 k+1}$) and for this, it is sufficient to exhibit points $x_{i j}$ in $\mathbf{P}_{2 k+1}$ and linear functionals $\mu_{i j}$ on $\mathbf{P}_{2 k+1}$ for which

$$
\begin{aligned}
\mu_{i j}\left(Q_{r s}-Q_{0}\right) x_{i j} & \neq 0 \quad \text { for }(i, j)=(r, s) \\
& =0 \quad \text { for } i>r, \text { and for } i=r \text { and } j>s
\end{aligned}
$$

since this insures that the matrix $\left(\mu_{i j}\left(Q_{r s}-Q_{0}\right) x_{i j}\right)$ is upper triangular with nonzero diagonal entries (using the ordering $11,12, \ldots, 1 k, 22, \ldots, 2 k, 33, \ldots, k k$), hence invertible. (We are using here the standard argument whereby the sequence $\left(y_{s}\right)$ in a linear space is linearly independent if and only if there exists a corresponding sequence (ν_{r}) of linear functionals on that space for which the matrix ($\nu_{r} y_{s}$) is invertible.) First, pick $x_{i j}=P_{2 k+1-i}$, all i, j. Then, since $Q_{r s}$ forces agreement at $k-r$ points, it agrees, by (ii), with Q_{0} on $\mathbf{P}_{2 k+1-r}$ and so $\mu_{i j}\left(Q_{r s}-Q_{0}\right) x_{i j}=0$ for $2 k+1-i<2 k+1-r$, i.e., for $i>r$ no matter how we pick $\mu_{i j}$. Further, pick $\mu_{i j}: f \mapsto f\left(\rho_{j}\right)$, all i, j. Then, as both Q_{0} and $Q_{r s}$ match the value at ρ_{j} when $r \leqslant j \neq s$, we conclude that $\mu_{i j}\left(Q_{r s}-Q_{0}\right) x_{i j}=0$ also for $i=r$ and $j>s(\geqslant r)$. Finally, we claim that $\mu_{i j}\left(Q_{i j}-Q_{0}\right) x_{i j} \neq 0$. For, otherwise, $Q_{i j} P_{2 k+1-i}$ would agree with $P_{2 k+1-i}$ at $\rho_{i}, \ldots, \rho_{k}$ as well as at the linear functionals $f \mapsto \int P_{r-1} f, r=1, \ldots, i-1$, i.e., $Q_{i j}$ would agree with $Q_{i-1, i-1}$ at $P_{2 k+1-i}$ and this would contradict (i).

Finally, up to this point, this section has been concerned with ssuper projectors of order (k, k). But we think it worth recording a version of Lemma 10.1 for ssuper projectors Q of order $(k, n), 1 \leqslant n \leqslant k$, along with a corresponding corollary concerning the k linear functionals $\left(q_{i}^{*}\right)_{1}^{k}$ associated with Q.

Lemma 10.2. The conditions

$$
\begin{equation*}
Q f_{k+j}=0 \quad \text { with } f_{k+j}:=P_{k+j-1}-\sum_{r=1}^{k-n+j-1} a_{j-1, r} P_{k-r}, j=1, \ldots, N \tag{17}
\end{equation*}
$$

establish a one-to-one correspondence between ssuper projectors Q of order (k, n) on $\mathbf{P}_{k+N}, N \geqslant n$, and lower trapezoidal matrices

$$
\begin{equation*}
\left(a_{q r}\right)_{q=0}^{N-1} \quad \underset{r=1}{k}, \quad \text { with } a_{q r}=0 \text { for } k-n+q<r \leqslant k \tag{18}
\end{equation*}
$$

In terms of linear functionals $\left(q_{i}^{*}\right)_{1}^{k}$ associated with Q via (3), the ssuper projector criterion (9.4) may be expressed as

$$
P_{i} \perp\left(P_{k+n+1-i} \cap \bigcap_{r=1}^{k} \operatorname{ker} q_{r}^{*}\right), \quad i=1, \ldots, n
$$

and Lemma 10.2 may be restated as

Corollary. The linear functionals $\left(q_{i}^{*}\right)_{1}^{k}$ define a ssuper projector Q of order (k, n) on $\mathbf{P}_{k+N}, N \geqslant n$, if and only if the two blocks of the $(k+N) \times k$ matrix

(whose transpose describes the action of the functionals with respect to the basis $\left(P_{k-1}, \ldots, P_{0}, P_{k}, \ldots, P_{k+N-1}\right)$ of $\left.\mathbf{P}_{k+N}\right)$ satisfy

$$
C B^{-1}=A,
$$

 linear functionals define distinct ssuper projectors precisely to the extent that the corresponding matrices A are distinct.

Proof. Q is a projector onto \mathbf{P}_{k} if and only if B is nonsingular. Q is ssuper of order (k, n) on \mathbf{P}_{k+N} if and only if the matrix A of (18) is connected with Q via (17). The $(j-1, i)$ element of the assertion $C-A B=0$ is found by applying q_{i}^{*} to (17).

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706
Theoretical Division
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

1. C. de Boor \& B. Swartz, "Collocation at Gaussian points," SIAM J. Numer. Anal., v. 10, 1973, pp. 582-606.
2. C. de Boor \& B. Swartz, "Collocation approximation to eigenvalues of an ordinary differential equation: The principle of the thing," Math. Comp., v. 35, 1980, pp. 679-694.
3. C. De Boor \& B. Swartz, "Collocation approximation to eigenvalues of an ordinary differential equation: Numerical illustrations," Math. Comp., v. 36, 1981, pp.
4. S. A. Pruess, "Solving linear boundary value problems by approximating the coefficients," Math. Comp., v. 27, 1973, pp. 551-561.
\rightarrow S. A. Pruess, "High order approximation to Sturm-Liouville eigenvalues," Numer. Math., v. 24, 1975, pp. 241-247.
5. K. A. Wittenbrink, "High order projection methods of moment and collocation type for nonlinear boundary value problems," Computing, v. 11, 1973, pp. 255-274.

[^0]: Received April 11, 1980.
 1980 Mathematics Subject Classification. Primary 65L15, 65Jxx.
 Key words and phrases. Piecewise polynomial, projection methods, ordinary differential equations, boundary value problems, eigenvalue problems, superconvergence, ssuper projectors.
 *Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the United States Department of Energy under Contract No. W-7405-Eng. 36.

